Excitons in Solids from Time-Dependent Density-Functional Theory: Assessing the Tamm-Dancoff Approximation

نویسندگان

  • Young-Moo Byun
  • Carsten A. Ullrich
چکیده

Excitonic effects in solids can be calculated using the Bethe-Salpeter equation (BSE) or the Casida equation of time-dependent density-functional theory (TDDFT). In both methods, the Tamm-Dancoff approximation (TDA), which decouples excitations and de-excitations, is widely used to reduce computational cost. Here, we study the effect of the TDA on exciton binding energies of solids obtained from the Casida equation using long-range-corrected (LRC) exchange-correlation kernels. We find that the TDA underestimates TDDFT-LRC exciton binding energies of semiconductors slightly, but those of insulators significantly (i.e., by more than 100%), and thus it is essential to solve the full Casida equation to describe strongly bound excitons. These findings are relevant in the ongoing search for accurate and efficient TDDFT approaches for excitons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn–Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Ta...

متن کامل

Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation.

Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by notin...

متن کامل

Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.

Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were app...

متن کامل

Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Depend...

متن کامل

The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computation

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017